Storyboarding the Domain Model

Justin Forder, Logica

Introduction

This talk is entitled “Case Study: Sid and Nancy apply for Life Insurance”. It’s about using storyboards to describe what goes on inside applications. The more usual application of storyboards is to lay out user interfaces. We’ll look at the way a domain model evolves over the life of a project. Applicable to the internal workings of applications with complex business processes and correspondingly complex domain models.

We’ll choose a notation and level of detail to help all stakeholders understand the system at the appropriate level.

Justin works for Logica’s finance sector helping projects to define their software architecture and choose appropriate development methods.

Storyboards

These are well known in the world of films. Ridley Scott drew them himself for Alien. It took four weeks! The idea has been transferred to user interface design – but it is hard to find examples of its successful application.

Project Pathology

Over time, it is very easy to lose sight of the “big picture”. Attempts to explain the system to users and stakeholders include

· Use cases

· Scenarios – end-to-end flow with just one path taken

· Acceptance Tests (Fit/BDD/TDD)

· UML (sketching, full, subset)

These techniques can be organised in a number of dimensions:

· Abstract vs. concrete

· Static vs. dynamic

· Textual vs. visual

· Local vs. Holistic

· Lightweight vs. High Ceremony

· Technical vs. Non-Technical audience

· Problem vs. Solution – this is dependent on the scope and context and analogous to the Requirements vs. Design distinction

Case Study

The original architect of the system under examination used the characters “Sid” and “Nancy” in describing the requirements of the life insurance system being developed. The names are based on Sid Vicious and his girlfriend, but they would not be particularly good risks for a policy!

The PowerPoint slides (with notes!) will be provided on the Web.

Project Context

The project team was mixed client/Logica. A big waterfall project had to develop a new system to handle life insurance application. The business had insisted on the waterfall model and committed the IT side to hand over a specification on a certain date. Many analysis deliverables.

Life insurance is complicated. The risk has to be assessed for each applicant in the context of the product applied for (risks vs. benefits).

The domain model was based on previous systems and industry standards (good). It was maintained by an individual with high level of “vision” (good). There was a mixture of well-understood and new functionality (ho-hum). There was little understanding of the technical risk inherent in the new ones (alarm).

350 pieces of a jigsaw puzzle – every use case in a document on its own! These were handed over piecemeal because of the deadline slippage – the team was faced with having to review bits at a time without an understanding of the whole context.

Attempting to Compensate

The original project architect had defined the “Sid and Nancy” scenario to help make decisions about the technical architecture. Justin asked the domain model owner to help bring this up to date in the light of learnings since the original scenario had been defined.

In the course of this, a number of questions were identified for the business analysts to answer. The end-to-end scenario was quite substantial (6 pages of pure text) with coverage of most complicated paths:

· Multiple, joint products

· Partly handled by agent, partly by insurer directly

· Some products accepted by automatic rule-based underwriting, but not all

· Manual underwriting requires evidence of health (which requires consent)

· Requested information has to be chased by automatic trigger

· Manual underwriting decision results in a counter-proposal

· New system has to interact with many other systems

What happened next

Time pressure meant that the end-to-end storyboard kept being postponed even though the analysts were keen to devote a whole day to it.

Justin was faced with the task of documenting the dynamics of the internal operation of the system, so decided to create a “logical/domain model” storyboard for the Sid & Nancy scenario.

The storyboard shows how the domain model is progressively populated during the unfolding of the scenario, and how derived data is computed from captured data.

Challenge: the choice of notation and abstraction to allow a complex model to fit into the frame and be useful to a wide range of stakeholders (business, UI design, development, testing…). Supporting summary/drill-down views was another need.

Why not UML?

UML object diagrams were obviously going to be too big. Even the system class diagram was highly complex. Just to prove it, Justin started to sketch the object diagram for a Case, which rapidly started to run out of paper.

But it was useful for explaining the reasons for the approach eventually adopted. For example, an Application has an Agent and Clients, and is linked to big rafts of things called Products and Benefits.

Simplification

Just the lines to connect them all up consumed a lot of paper. Ownership and containment were the reason for many of the associations, and these could be represented differently.

Why is it necessary to name all the example objects? To illustrate and explain the purpose and role of the object, mainly.

Layout of the Application Content

Justin chose nested boxes, arranged in columns to indicate which applicant each object related to.

This was then surrounded by another box called a Case – which adds columns for contacts (incoming and outgoing correspondence) and to-do items. One new type of to-do item had emerged between the original scenario and the new one: a missing-information record. For example, if a direct-debit instruction has not been received from the client, this will be shown as a to-do and while it’s still there, the policy cannot be issued.

Customers who decide not to accept a proposal tend not to respond – they just go elsewhere. So triggers can be built in to send reminders and eventually to let proposals / applications lapse.

Populating the Model with Actors and Processes

For human actors, Justin uses stick-men with round heads; for system actors he uses stick-figures with a square head. Processes (which connect information objects and actors) are shown as ovals. Colour coding on information flows indicates whether they are updates or outputs; shadows behind boxes indicate that they contain derived information.

Content of the Storyboard

Justin used original scenario text before the picture, then a picture to illustrate one or more steps in the story, then explanatory text. In this case, step 1 is the agent inputting basic information about the clients. Step 2 is the generation of a basic quote. Step 3 is selection of a product or products.

Step 4 is a printout of the illustration for the customer.

Step 5: Sid & Nancy come back with a request to complete the quote. Here, Justin shows two instances of the Interactive Underwriting process (and its associated UI process) – one per client. Also, an additional entity appears on the application model layout – an Underwriting View derived from the input data.

Step 6: Customer Declaration. More information is captured (including contact details) and the signature. This brought out the need for new screens to be used following the customer declaration – certain information would not be alterable thereafter.

Step 7: Automated Underwriting Decisions. At this point, the underwriting view updates the application object. This illustrates very well why automated underwriting is possible only for certain of the products in the mix – Nancy had to be referred to manual for one benefit, and then all of the product had to be referred to manual underwriting.

Step 8: Drop one product. Nancy wasn’t the main wage earner and so her critical illness cover wasn’t essential. The client decided to drop this to avoid the delay.

Step 9: Submit application to insurer. This storyboard frame had to be split into two because there was such a lot going on. A load of to-do items (represented as post-it notes) pop up in the To-Do column. Missing info is identified by a “?” icon and tasks by a checkbox. One benefit of this explicit representation was that the status of the application could be summarised in every piece of correspondence to the customer – both current blockers and information that will be needed in the future.

The insurance company’s central database is updated with the products and decisions related to each client.

In the second frame, the Contacts column is updated with letters sent out to various people and information received back.

This goes on for 23 steps altogether!

Callouts can be used to show more details (e.g. about a to-do item).

Conclusions

· A realistic scenario is essential

· Make a manual attempt to break into frames

· Start at the end – use the most complex model population to identify a layout that will be stable for all stages

· Sketch by hand until happy with the result (print layout templates to help)

· Visio lets you re-use elements easily

Analysts liked the notation – so did testers! The new business architect liked the way the model was brought to life – it eased the learning process. Any new joiner to the project would find it useful as a quick way to get up to speed and at least to identify questions that need further investigation.

Further Work

· Object orientation – this storyboard notation separates state from behaviour (but most people don’t seem to find this worrying)

· It would be nice to show where each stateful object is within its lifecycle – where that is significant

· How to maintain the storyboard over the lifetime of the project, as the design evolves (quote: “despite assertions to the contrary, Functional Specifications are not a thing of the past”).

· Prompts for discussion (see slides)

