Fighting Fire with Fire

A Pattern Language for Rotten Projects

Matt Stephenson, Stephen Hutchinson – Royal & Sun Alliance

Introduction

Session Objective:

· Begin to develop a pattern language to identify and deal with project rot

· Understand more about patterns, and how they could help your organisation

Three team exercises – collect experiences, produce anti-patterns, produce alternative patterns.

Team Exercise 1

15 minutes. Write specific problem or symptom statements.

Symptoms:

· Blame shifting and deflection strategies being adopted

· Missed delivery dates / milestones

· Loss of sponsor

· Loss of vision

· No demo of the system available

· Continual scope creep

· Spinning wheels – meeting paralysis

· Lack of convergence (documentation and diagrams being churned out to no good effect)

· List of requirements “t.b.d.” doesn’t get any shorter

· “Infinite Defects” – number of outstanding bugs on the list keeps growing

· Grim atmosphere – too much hard work, not enough fun, people thinking about looking for a new job

Problems

· Mismatch of vision between team and sponsor

· Too many layers between end client and developer team

· Ill-defined objectives (or lack of agreement about them)

· Too many people brought onto project prematurely

· Dispersal of project team across timezones

Strategies

· SMART requirements

· SCOTSMAN

· Exit criteria to work stages

Some Definitions

Buzzwords such as “pattern” can be over-used and hence mis-used.

Pattern: For the purposes of this session, a description of a behaviour that can be employed, which is designed to solve specific problems and satisfy forces that are brought to bear. NB problems can be structural, but there would have to be a behaviour that causes the structure to be wrong and a behaviour that can fix it (e.g. by changing the structure)

Pattern Template: see below.

Name: A meaningful conceptual handle

Context: Situation in which the problem occurs

Problem: Problem statement and intent of solution

Forces: Goals, constraints, motivations and trade-offs

Solution: describes the solutions and the participants

Examples (optional): past uses of the solution

Resulting Context: the end result – shows the forces satisfied

Related Patterns: similar patterns, ones which may precede or follow, or related anti-patterns.

Anti-Pattern: very confusing. An often-quoted anti-pattern is “spaghetti code” – but really this isn’t an anti-pattern, it is a description of a problem (or symptom). For the purposes of this session, exactly like a pattern, but the solution to the problem turns out to be bad and can generate worse problems than it solves. Same pattern template.

Pattern Language: for the purposes of this session, a collection of related patterns and anti-patterns.

Example anti-pattern

Name: Scaffolding Code

Context: you are responsible for enhancing code that you are not familiar with.

Problem: you need to make a change (enhancement, bug fix…)

Forces: Code is obscure, new bugs will have significant negative impact, comprehensive testing is difficult and you have a tight deadline.

Solution: only rely on bits of the system you understand. Create a scaffold of code around what you do not trust. Don’t re-use stuff you do not understand.

Resulting Context: change has been made quickly, no bugs in existing functionality, BUT much duplicated logic and spaghetti code if the pattern is applied repeatedly. (Imagine building a bookshelf where you are unsure of the firmness of the floor by putting scaffolding on the trusted hard ground outside and extending a supporting bracket in through the window).

Related Patterns: Cut-and-Paste Programming.

Pattern and anti-pattern?

The same behaviour, described in a pattern template, could be considered as a Pattern (good) or Anti-Pattern (bad) depending on the context!

Team Exercise 2

Using the notes from the last discussion, produce some anti-patterns. Look for the behaviour that led to the problem (and why did they do that).

Example: Loss of Sponsor.

What caused the sponsor to jump ship? The sponsor lost confidence.

But why jump instead of staying to fix it? Fear of being associated with a failed project.

Why are they afraid of that? The company rewards sponsors of successful projects, but penalises sponsors of failed projects.

Resulting Anti-Pattern: Disown Project

Context: Sponsor is responsible for authorising expenditure. They are rewarded for successful projects and penalised for unsuccessful ones. There is a project that has a committed team, but it is going badly.

Problem: how do you avoid being penalised for being the sponsor of a failed project?

Forces: sponsors don’t want to be responsible for closing down a project, because you’re penalised for being associated with a “failed” project. Those who have put time and effort into a project have a vested interest in continuing it.

Solution: Disown the project and move onto something more interesting.

Examples (optional): none

Resulting Context: Sponsor avoids blame. Projects that start to go wrong tend to get abandoned by their sponsor. Team members who have put in time and effort are demotivated. The feeling carries through to the next project.

Related Patterns: 

Answer:

Anti-Pattern: Subcontract the Overload

Context: Systems house has won more competitive tender contracts than it has the resources to deliver in parallel.

Problem: How do we deliver?

Forces: We want to avoid incurring penalties for late delivery. We don’t want the work going to our competitors (largely because there is tied-in hardware and licence revenue). We do not want to take on extra permanent staff (training lead-time, likely over-capacity later).

Solution: Subcontract the development work to another organisation, which apparently has the required skills, and expect them to fulfil the end client’s requirements.

Examples (optional): Mobile Telecoms Intelligent Network Platform.

Resulting Context: Successful delivery relied on too many parties with conflicting objectives. Understanding between stakeholders and developers was hampered by a long chain of communication. Ultimately the software system was delivered late and did not meet client expectations.

Related Patterns: 

Anti-Pattern: Keep subcontractor at arms’ length

Context: Systems house has won more competitive tender contracts than it has the resources to deliver in parallel. Decision is to subcontract part of the work.

Problem: How do we prevent the subcontractor from taking control over the project and hence ownership of the client?

Forces: We don’t fully trust the subcontractor, who is a former competitor. Subcontractor might look more attractive to the client than we do! We wrote the proposal to incorporate key technologies (our IPR) so we need to make sure that the subcontractor uses them. We have not worked for this client before, so we want to keep them happy in order to win more work from them in the future.

Solution: Establish procedures for formal communication, and insist on following the legal terms of the contract. Insist on delivery to agreed timetable, no matter what.

Examples (optional): Mobile Operator’s Intelligent Network Platform.

Resulting Context: Heavily impaired communication of client’s objectives and requirements to development team. Quality of delivered documents and system does not meet client’s expectations.

Related Patterns: Subcontract the Overload

Fighting Fire with Fire

Alternative patterns:

· Offer a different way of solving the problem, but must satisfy all of the same forces addressed by the original anti-pattern

· The new pattern(s) should result in a better outcome than the original anti-pattern

Remedial patterns:

· Offer a solution to one or more of the problems introduced by the anti-pattern.

· Analogy with palliative drugs given to combat the side-effects of primary medication.

Hidden forces

Sometimes a pattern becomes characterised as an anti-pattern when some force comes to light, which hadn’t previously been recognised.

It might therefore be worth thinking about possible additional forces, which might help to suggest alternative or remedial patterns.

Team Exercise 3: devise new patterns

Remedial Pattern Name: Arbitration Workshop

Context: Subcontracting relationship (communication barriers) prevents acceptance of significant milestone deliverable(s)

Problem: How to resolve issues faster than they arise?

Forces: Significant number of issues remain to be resolved in order to achieve payment milestone, number of issues to be fixed is not going down fast enough.

Client is unhappy because development team doesn’t appear to understand objectives. Team is frustrated because deliverables keep getting rejected with outstanding issues. Project manager is getting rattled because cashflow plan is at risk.

Solution: Gather all significant stakeholders and development team in one location for several days to work right through the list of issues and reach agreement on each one.

Resulting Context: everyone happy (at least for a while). Trust improved between client and developers.

Alternative Pattern: Employ subcontractors who think as you do

Alternative Pattern: Directly hire contract staff

Context: Systems house has won more competitive tender contracts than it has the resources to deliver in parallel.

Problem: How do we deliver?

Forces: Avoid incurring penalties for late delivery. Don’t want to take on extra permanent staff (training costs, potential over-capacity). Cannot find a subcontractor whom we trust to share and meet our objectives. Avoid handing the work to our competitors.

Solution: Hire contract staff who already have the right skills, manage the project closely to achieve goals.

Resulting Context: Control is retained, but the quality of work done may be variable and needs to be closely monitored. Hence costs (including administration) may be higher. Specialist skills may be in short supply, leading to unpredictable delays impacting the project plan. No-one to shift the blame onto when things go badly. Earlier validation of project deliverables.

Related patterns: Subcontract the Overload

Conclusions

· This appears to be a useful technique for achieving focus on problems and potential solutions

· It forces you to look behind the phenomena to identify the forces at work

· Anti-patterns are often ingrained in organisations

· Patterns build into a catalogue or pseudo-metric that is far more persuasive than anecdotal evidence

· Helping people discover the answer is better than presenting it to them on a plate. The pattern is a neat shorthand for doing that.

If you try this at home, please inform Steve and Matt how it went! Results will be put on the OT Wiki.

