
[image: image2.wmf]
[image: image1.wmf]

Requirements and Architecture – Traps and Pitfalls

27th March 2006

Rob Machin, Chief Technical Architect, Concise

Chris Cooper-Bland, independent Solution Architect

Attended by 14 Delegates

1 Background to Session

The two presenters have presented a number of sessions on best practices over the years – now it is an opportunity to reveal why these are needed, by looking at some war stories of projects / programmes that have gone less than ideally well.

2 Typical Problems in Requirements and Architecture

Gartner estimate that 75% of projects fail by missing time and budget projections. Many organisations lose as much as 45% of total revenues due to IT quality problems. Standish Group showed that 64% of features delivered were used rarely or never.

2.1 Traps and Pitfalls: a definition

A pitfall is something to look out for, while a trap is a more serious problem that can’t be fixed in reasonable time and with reasonable cost (an anti-pattern).

Examples include:

Requirements

· Failure to define scope

· Inability to manage change

· Analysis paralysis

Architecture

· Ivory Tower

· No usable definition of the architecture (designers ignore it – lack of continuity)

· Architecture teams in silos

· Architects inexperienced in the target technology (lack of credibility, failure to learn)

3 Group Work – top three problems

· Scope creep – architecture fails to respond to changing requirements (existing requirements are hardly ever de-scoped)

· Failure to understand what’s important

· Failure to decommission legacy systems that really aren’t used any more

· Rush to build the system precludes time to study and really understand the requirements

· With sufficient background knowledge of the domain, it is sometimes possible to produce designs in just a few weeks

· Architectural quality is hardly ever measured or assessed

· Architecture that just emerges – e.g. by modifying an application server vendor’s example application

Other groups came up with:

· Throw-it-over-the-wall: no feedback, no iteration

· Poor or antiquated knowledge by architects

· Poorly defined role for the architect

· Failure to elicit requirements from customer

· “Too obvious” requirements are never stated, just assumed

· Implicit requirements

· “We’ve always done it this way” (lack of creativity

· Keeping the requirements model in synch with the implementation model

· Testing: lack of acceptance tests / poorly defined acceptance criteria / lack of involvement by customer

· Translation problems – developers misread specs

· Technology First – focus on the vendor’s hype, product choice based on what would look good on the CV

· Needless complexity (gold-plating)

· Failure to recognise that requirements cannot be fully defined up-front

· Architecture that stops at too high a level to recognise the true problem

· People wanting to protect their own jobs – politics

· “Bloody Consultants”

4 Best Practices and Anti-Patterns

An anti-pattern is a negative solution – a form that describes a commonly occurring solution to a problem that generates decidedly negative consequences. Mainly due not to malice but to ignorance, apathy or sloth.

4.1 Finding anti-patterns

· Find a problem

· Establish a pattern of failure

4.2 Best practices

· Collaborative Working

· Share tacit knowledge

· Resolve questions quickly

· Inter-disciplinary

· Communicate between teams

· Architects should be “embedded” with projects

· Enterprise architecture should be supported by cross-department liaison

· Risk-based prioritisation

· Work with the business

· Map technical risks (e.g. performance, safety, availability) onto business risks

· MoSCoW rules

· Based on a dialogue – e.g. “must have” in order to reduce architectural risk, “won’t have” because the functionality is not important to business

· Perfectly compatible with agile development (comes from DSDM)

· High priority to features that carry planning risk

· Visual modelling

· 500-page requirements documents are never read

· Use a standardised modelling notation to eliminate ambiguity

· Walk customers through the model to explain it – they will understand it and feed back useful information

· Iterative working

· Learn from mistakes as early as possible, don’t over-commit

· Regular deliveries to users to demonstrate business value and progress

· Change control

· Might be considered tedious, but essential

· Monitor against baselines to be able to understand impacts of changes

· Update everything in synch

· Tool support helpful (CM, issue tracking)

· Measure rate of change to see how near to completion the project is

· Tools and best-practices

· Pick the right ones for the job!

· Lightweight tool review at appropriate stages

· Pick process that is appropriate for project (lightweight process for small projects)

· Discard what doesn’t help you to do the job

· One-size tool (e.g. everything becomes a WebSphere problem, central architecture team mandates use of TestDirector) might help keep down support costs, but tools should be reassessed regularly (have a technology roadmap)

· Accenture has moved from a tool-based to knowledge-based culture

· Clear traceability

· Link scope to the cost & value

· Traceability matrix from requirements to architecture to code to tests

· Automate change impact analysis

· Metrics collection to aid estimation

4.3 How useful are best practices?

Map anti-patterns against their solutions on a grid. E.g. “failure to define scope” addressed by “change control”, “iterative working” etc.

4.4 Anti-pattern template

Synopsis: basic deal

Symptoms:

· Recognising the symptoms

Solutions:

· Ways to address the problem

5 Group Work – Define your own requirements anti-patterns

5.1 Anti-Pattern: Infinite Complexity

Synopsis: inherently “hard” requirements – you can’t really understand them until you have tried to implement the system

Symptoms:

· Fingerpointing

· Hard to achieve traction

· Requirements seem to keep changing

· Different customers provide very different views

Solutions:

· Iteration

· Early prototyping (e.g. paper storyboard for screens or compare to another system)

· Bring in external domain expertise

· Keep close to the customer

· Provide them with an inspection UI to see what’s happening under the hood

· Bring all customer representatives into the same room to thrash out issues

· Hot-house workshops work well within commercial outfits such as BT

· Public sector processes are so complex that nobody has real authority to make decisions, so commitment is much harder to obtain

· Take ownership: it’s a shared problem, so share the solution

· Even write the contract to be short-term and assume some of the risk

· Avoid the payment milestone trap, focus on business value

· Choose the right-size problem to solve! (Divide and rule – the Art of the Possible)

· Danger: managers like to have a big programme to manage

5.2 Anti-Pattern: Inability to describe the requirements to the team

Synopsis: Solution does not match the problem

Symptoms:

· High rate of requirements change

· Tacit knowledge not specified to development team, just assumed

· Mismatch in problem understanding

Solutions:

· Workshops – all stakeholders gain understanding

· Choosing the right tool – one that the customer can understand

· Walkthrough the use cases

5.3 Anti-Pattern: Implementation Model doesn’t match Requirements Model

Synopsis:

Symptoms:

· Implementers spot and “fix” inconsistencies

Solutions:

· Configuration management

· Build checks into planning process

· Team communication

· Co-location

· Traceability

· Never work on more than two things at a time. If you’re working on a feature and you have to wait for a dependency, work on the other one. If that is stalled as well, fall back to improvement activities.

· Create achievable goals, make sure they focus on the right things (e.g. not just “stories completed”, but quality tests as well)

6 Group Work – Define your own architecture anti-patterns

6.1 Anti-Pattern: One-Shot Architecture

Synopsis: The architecture is non-iterative and doesn’t respond to change

Symptoms:

· Architectural documentation out of synch with implementation

· Non-optimal solution

· Nobody reads the architecture documentation

· No respect for the architecture team

· Business and developers are both unable to describe the architecture, identify interfaces etc.

Solutions:

· Architects must be involved in the project for its entire lifecycle

· Iterative working – short feedback cycles

· Start with a model and refine it

· Make Architect responsible for the end result

· Developers are often also responsible for maintaining code, so architects should also eat their own dog-food

· Responsibility devolution leads to higher pride in the work

· Peer review – collective ownership

6.2 Anti-Pattern: Difficult to assess quality of architecture document

Synopsis: Architectural review is superficial or inconclusive

Symptoms:

· Architecture document doesn’t get used

· Architecture is not testable because it is too high-level

· Contains wrong tradeoffs, not discovered until too late

· Too expensive to maintain the system

· Surprises

Solutions:

· Iterative process – put architecture to the test sooner

· Independent review of architecture

· Could give the central architecture team a positive role

· ATAM or ZEAF

· Scenario-based – “what-if” considerations, prioritied

· Record and follow up the actions

· Develop test cases for architectural characteristics – e.g. maintainability can be tested by specifying that a given change can be implemented in two days

· Apply the “negative test” to architectural requirements – e.g. does it make sense to require a system to be “not scalable”?

6.3 Anti-Pattern: Unplanned Architecture

Synopsis: Developers start by throwing together a system and architecture emerges along the way, which turns out to be not good enough (flexible, scalable, performant, secure…)

Symptoms:

· Example is hacked into a prototype and then adapted to form the solution

· Developers have no clear or consistent view of the architecture

· Architecture breaks when trying to scale, add a new requirement etc.

Solutions:

· Learn from the ad-hoc architecture: decide what to keep and what to improve

· Document and communicate the architecture

· Within the team

· To the stakeholders

· Create review checklists from the architecture to use in design & code reviews

· Bring in external expertise to review the architectural quality

· Each extension of a system should involve review of the basic assumptions

· Practitiioners should have a broad knowledge of the software industry as well as their particular specialism

· Enterprise architects should be able to understand the business processes as well as software practice

· Software architects should have a code development background

6.4 Pattern: No Broken Windows

Synopsis: Leave no detritus around – broken components are either fixed or removed

Symptoms:

· A neighbourhood is cleaned up by forcing landlords to fix broken windows or face having the building demolished

· In the same way, software developers have a responsibility to remove broken code

Solutions:

7 Architecture Solution Approaches

See the conference handouts for results of Rob’s and Chris’s matrix of usefulness of approaches. It was interesting to see that traceability and tools come well down the list.

COMPANY CONFIDENTIAL

	Requirements and Architecture – Traps and Pitfalls
	27th March 2006

	Architecture Solution Approaches
	Page 7

COMPANY CONFIDENTIAL

[image: image1.wmf][image: image2.wmf]