
[image: image2.wmf]
[image: image1.wmf]

SPA2006 Functional Relational Programming: Waging war on complexity
29th March 2006

Peter Marks, Ben Moseley

1 Design Consequences Game

Develop a machine in three iterations, starting at the bottom of a sheet of paper. Each iteration introduces new functionality.

1: Move itself at up to 15 MPH over uneven ground.

2: Carry up to 60kg

3: Sensors for communication and positioning

Result: human!

2 Overview

Part One: Complexity

Part Two: Functional Relational Programming

Preview of conclusions:

· State is the root of all (well, most) evils

· Much complexity in software is non-essential

· Constraining our systems to possess only essential state helps control complexity

· Separating non-essential control from essential logic reduces complexity

· FRP is worth exploring further

3 Types of Complexity

Fred Brooks said that the complexity of software is an essential property (1987). What does this mean?

· What is complexity? – quality of being intricate, compounded

· Software complexity reflects the real world, which it models

· Nothing to do with computational complexity

· Complexity leads to all the well-known problems of software

· Code is difficult to understand

· Essential? – inherent in its nature

· Software? – difficult to define:

· Field of software (a discipline, like physics)

· Should be possible to master through study

· Software artefacts

· Clearly it is possible to make simple pieces of software, which would disprove the theorem

· Run-time behaviour of software

· Software in its running state has many and complicated interactions with data, state, external systems, users…

Over time, software increases in complexity (probably in an exponential-ish way).

The well-known “cost of change” over time curve has a very similar shape.

3.1 Approaches

· Software engineering traditionally tried to defuse this curve by ensuring that everything about the system was known in advance. We know where that leads.

· 4GLs – trying to simplify software by constraining developers’ choices.

· Object orientation – managing complexity by subdividing it.

· Agile processes – reducing complexity by building no more than you need, and refactoring software continuously to make it simpler.

But what is software essentially doing? Performing the functions desired by the user. But the complexity in software arises from accidental or intrinsic factors as well – arising from the implementation approach.

3.2 New definitions

Essential complexity: inherent in the problem being solved.

Accidental complexity: introduced in trying to solve the problem.

3.3 What was wrong with 4GLs?

· Not very good languages (language designers were not involved)

· Didn’t make a paradigm shift (higher level of abstraction not achieved)

· Hardware not fast enough

· Degenerated to poor 3GLs (developers still had to think about back-end functionality)

· But: spreadsheets and RDBMS exploded

· In banks today, you see critical work being done on Access and Excel, in parallel with systems being developed by IT departments: end-user power

3.4 Manifestations of complexity

A lot of accidental complexity arises from the handling of

· State

· Synchronisation etc.

· Caching

· Control

· Dependency and order

· Control in most languages is implicit in the ordering of statements

· Code Volume

· Large amount of code makes it hard to understand

· Removing accidental complexity can make a positive impact on this too

· Expression

· Expressive power of the programming language

· Idioms and patterns adopted

· Good naming and layout, decent commenting etc.

3.4.1 Quicksort example

· Duplication of chunks of code

· Lack of abstraction (swap array elements operation not identified)

· Transient state (local variables)

· Poor naming (variable “p”)

· Arbitrary ordering

· Why sort the upper array after the lower one? Makes the algorithm much harder to parallelise

· Why move the lower boundary up before moving the upper boundary down? Essential, because the value at the upper bound has been chosen as a pivot!

· Optimisation

· Sorting in-place: necessary on machines with low memory complement

· Choice of pivot

· Specific algorithm: why quicksort?

Choices have been made for performance reasons, rather than for reasons intrinsic to the problem.

3.5 Activity 1: Wood and Trees

· Work in groups of four to identify sources of complexity in a non-trivial software system (part of the Java petstore example)

· Distil its essence and focus on what remains

· Note accidental complexity (colour-coded)

· Blue: state-related (derived, transient)

· Red: control-related (arbitrary ordering)

· Green: expression-related (duplication/redundancy, inconsistency particularly of idiom, missing or unnecessary abstractions)

· Part two: sort resulting notelets into three piles

· Platform-related

· Language-related

· Effluent – unwanted by-product of the development process

· Part three: sort each pile into order, reflecting the impact of each kind of accidental complexity

Results:

· “Control” issues mainly relate to the “language” category (arbitrarily defined as relating to both Java and EJB)

· “Expression” issues mainly relate to the “effluent” category

· “State” doesn’t appear in the “platform” category (surprised Peter Marks – perhaps because the delegates didn’t have practice in thinking about this problem)

· Many of the observed “control” and “expression” issues might be symptoms of an underlying “state” problem

· Many more observations in the “effluent” and “language” categories than in the “platform” category

4 Sources of Complexity

Those who know do not speak, those who speak do not know (Lao Tse)

Complexity is either essential (intrinsic to the problem) or accidental (everything else).

Accidental complexity includes things that shouldn’t be there at all (dead code, poorly structured code…) as well as things you’re bound to find for pragmatic reasons:

· Performance related code (managing caches, optimisations…)

· Language exigencies

· …

This latter category of accidental complexity is very roughly 75% state, 25% control.

Both outweigh the amount of essential complexity (these are very inexact quantities!).

Take away the message that less state would be a good thing.

4.1 Desired Architecture

Keep the essential stuff as pure and clean as possible – relegate accidental details to a separate area of thought (and keep them as small as possible). E.g. business rules should be changeable in isolation. This needs to be supported by an appropriate infrastructure.

4.2 Functional Programming

FP is stateless by definition.

Perhaps it is better to think of FP as a set of useful techniques, rather than a group of languages. These include:

· Immutability

· Passing and returning functions

Advantages include expressivity, speed and the capability to reason about programs.

The functional paradigm leads to very concise expressions of programming problems. Parallelising is made much easier by the elimination of state and arbitrary ordering. Google has taken a functional style to the map reduction problem (though coded in C++) to tackle the problem of updating their search index frequently.

4.3 A model designed to manage state in a predictable way: Relational

The relational model is not SQL! It is applicable in a number of different ways. It’s powerful and flexible, and has a sound mathematical foundation.

The structural component of the relational model is based on set theory. Duplicates are prohibited and ordering is irrelevant.

The word table is used to describe the visual representation, while the word relation is used to describe the underlying abstraction. E.g. the same relation can be represented by two different tables, with rows and/or columns in a different order. Relations are made up of tuples.

The other components of the relational model are:

· Manipulation (relational algebra – eight fundamental operators that take relations as input and return other relations)

· Integrity – arbitrary Boolean constraints that must apply at all times: e.g. by rejecting or modifying operations that would violate integrity

· Data independence – Ted Codd was very keen on this – keeping a very clear distinction between the logical and physical layers. Logical structures should never be modified to achieve performance targets, for example. Denormalisation for “efficiency” is a by-product of the imperfection of data independence today.

Other applications can use the data stored in relations without being constrained in any way. This has led to great success for relational databases.

Potentially, the same ideas can inform systems engineering with the same kinds of advantages. However, the relational model would have to be extended – for example, it has no computational capabilities.

5 Functional Relational Programming

5.1 Functions and Relations

FRP is a completely new and unproven approach (as far as Ben & Peter know). Based on two well known existing ideas. It aims for simplicity above all else.

It’s more of a software architecture than a language.

In examples today we will not be talking about user interfaces – though some experimentation has taken place.

5.2 High-Level Architecture

In terms of our ideal architecture (see above), the essential complexity part has state complexity only – no control complexity. Users care that the system produces the correct outputs for the correct inputs. Nothing else matters. So let’s separate essential logic from essential state (and of course, from the accidental state & control and the infrastructure).

References are directed – from accidental to essential, from logic to state. The same essential logic can be re-homed to depend on an entirely different essential state piece. In other words, it has no capability to “mess around with” the state explicitly.

Relations are used to implement the essential state and part of the essential logic. Functions are used to supply the remainder of the essential logic.

Interfaces are an additional component that allow state to enter and leave the system (inputs and outputs). Read the paper Out of the Tar Pit for more details.

5.3 Worked Example

Academic paper publishing: each paper has a life cycle from submission through review to published (or rejected).

5.3.1 Essential State

· Consists solely of definitions of relations representing the user’s inputs to the system

· Defined by a relational schema for the inputs

· The whole system will be driven by the users’ updates to these input relations at run-time

· Users would not expect the “reject” result to be an input, but an output

· The essential state consists of user inputs

· No derived values are stored

5.3.2 Relational Schema for essential state

· Paper: (paper title, author, submitted)

· Posting: (paper title, posted)\

· Opinion: (paper title, reviewer, opinion)

· Journal: (issue, paper title) – records which paper was published in which issue

Deletion and updating should not require new relations.

5.3.3 Essential Logic

These are definitions of derived relations:

· Intermediate and output relations

· Defined in terms of the essential state relations

· Uses relational algebra

· Uses pure user-defined functions (the full power of functional programming)

Essentially these are similar to view definitions in an RDBMS.

· This is where you would put integrity constraints

· But there are no facilities for manipulating the essential state

This approach limits the power of the different parts of the system in order to make the whole system easier to reason about (see also Tim Berners-Lee’s recent pronouncements about power).

For example,

OVERVIEW = project (OPINION, paper-title opinion)

This uses the projection operator to define a derived relation (Overview) by selecting one or more columns of another.

BAD_OPINIONS = restrict (OPINION | opinion==BAD)

REJECTED = project (BAD_OPINION, paper-title)

Conversely, find the accepted papers:

GOOD_OPINIONS = restrict (OPINION | opinion==GOOD)

ACCEPTED = project (GOOD_OPINIONS, paper-title)

That doesn’t work, because a paper would then be accepted if anyone had given a good opinion. But we want to accept only papers that have had no bad opinions and at least one good.

ACCEPTED = minus (project (GOOD_OPINIONS, paper-title), REJECTED)

Essential logic change: reviewers are now expected to give their opinion as a percentage score instead of GOOD/BAD.

This would break the above derived relations. So we have to redefine OPINION as a derived state.

OPINION = extend (SCORE, opinion=opinion_from_score(score))

Extend is not one of the eight essential relational operators, but frequently associated with them.

5.3.4 Essential logic summary

· Derived relations

· User-defined functions

· Constraints

· No state and no control

5.4 Accidental State and Control

Basically this should be just a configuration file used to tune performance:

· Declarative specification of where state should be used (e.g. cached results)

· Declarative specification of what control should be used (e.g. eager vs. lazy evaluation for different parts of the system)

· No effect whatsoever on the correctness of the logic of the system

5.5 Infrastructure

· Should be entirely independent of the rest of the system: totally system-agnostic

· Can be written fairly easily in any language – 2000 lines of Java or 1500 of SCHEME

· Determines what performance settings are made available to the Accidental component – also distribution, persistence, indexing

· May provide type-checking, basic functions, and so on

6 Exercise and Discussion

6.1 Activity: DVD Rentals

Design a system to manage a DVD store:

· Give information about stock

· Give information about rentals

Some guidelines:

· Assume the existence of any useful function

· Don’t worry about syntax

Relations:

· DVD: (title, sku)

· CUSTOMER: (customer-name)

· RENTAL_EVENT: (sku, date, customer-name)

· RETURN_EVENT: (sku, date)

· LOSS_OR_JUNK_EVENT: (sku, date)

· …

Derived relations:

· OUTCOUNT = summarize (RENTAL_EVENT, project (DVD, sku, outcount=count(?))

· INCOUNT = …

· STOCK = join (OUTCOUNT, INCOUNT)

· OUT = restrict (join (OUTCOUNT, INCOUNT) | OUTCOUNT > INCOUNT)

7 Conclusions

What happens to Objects in this sort of approach? They probably aren’t needed (see below).

Concurrency is no longer an issue – it is (almost) never an essential aspect of the complexity of a system. Most concurrency issues arise as a result of state changes, which disappear once you eliminate the reliance on state.

· Current approaches concentrate too much on managing state instead of eliminating it

· Reduce power of any part of the system to affect behaviour (e.g. garbage collection)

· Integrity constraints – encapsulation was designed to do that but is limited to internal integrity

· But object-oriented approaches can be used to build the architecture – e.g. represent a function or relation as an object

· Data independence and access path independence – we found that it was fairly arbitrary which relations we defined as essential and which as derived

· User Interface issues have not really been addressed as yet

COMPANY CONFIDENTIAL

	SPA2006 Functional Relational Programming: Waging war on complexity
	29th March 2006

	Conclusions
	Page 9

COMPANY CONFIDENTIAL

[image: image1.wmf][image: image2.wmf]