Domain Specific Languages: Design & Evolution

Peter Bell, CEO/CTO, SystemsForge

Agenda

Background

Presentation

Exercise

Presentation

Discussion

10,000 Applications a Year

Peter’s company has tens of thousands of customers, each of whom has slightly different requirements for their e-commerce site. So every one needs a semi-custom solution.

Configuration was not scalable enough.

Coding took too long.

DSLs turned out to be the ideal solution. It has some additional benefits:

· A metadata repository, which can be reused

· An extensible framework usable for custom code

Even in a DSL, it takes a long time to describe an e-commerce application that involves 20 or 30 business object types. So the meta-data repository helps by supplying chunks of reusable functionality.

Presentation

What is a DSL?

An executable language targeted to a specific problem domain – not a silver bullet that does everything.

Specific: can’t do everything

Executable: not just conceptual

Raising the level of abstraction

Download the book by Eric Evans.

Everything is a DSL

This is a useful but strictly untrue definition. Examples:

· API

· Database schema

· XML file

· Object (methods with parameters)

Most developers have an approach to solving problems. A few years ago, Java developers would always create an XML schema for system configuration.

Describing a DSL

A DSL is defined in terms of

· Syntax, not semantics

· Grammar: element tree

· Elements: 0..n attributes

· Constraints: what is valid

Writing a good language can take months – the hard part is understanding the domain.

Abstract Grammar vs. Concrete Syntax

These distinguish what you say from how you say it. Spring is for developing wizard-based workflow on the Web. Peter used elements of the Spring DSL to describe wizards for his own product.

The concrete syntax doesn’t matter – could be XML-based or like a .ini file, or a completely custom format. In fact the same abstract syntax can be projected in different ways for different users/uses.

Internal vs. External

Examples of internal DSLs:

· API

· Language Extensions – example, Aspect (see Dan North) extensions of Ruby

Examples of external DSLs:

· XML

· Comma-delimited values

· Little language

· Databased

· Visual

Horizontal vs. Vertical

Examples of horizontal (technology focused) DSLs:

· SQL

· RegEx

· Import description language

· Workflow notation

Examples of vertical (business focused) DSLs:

· Insurance policy language

· Product configuration language

Projections

Multiple projections are possible:

· API: technical reuse

· XML: semi-technical, good for I/O and transforms

· Visual: semi-technical, gives users a sense of their system

· Database: reuse / content-management

Top-Down or Bottom-Up?

Where do you start?

· Top-down: domain concepts – usually best for green-field opportunities; break into layers if necessary

· Bottom-up: repeating patterns – usually best for existing applications. Factor out common code and/or replace repetitive API calls with configuration files.

Generation vs. Synthesis

· Generation: save code files to disk

· Synthesis: process DSL dynamically

· Compilation vs. interpretation

· Late-bound decision

· Why generate?

· Language limitations

· IP protection

· Performance (proven issue)

Exercise: Designing DSLs

Requirements

Developing a J2EE CMS, we need to import 20 different business object types (user, product, article, etc.). The import rules change approximately monthly (new properties, objects, etc.)

Deliverables

Grammar: elements and attributes

Possible constraints

Projections to concrete syntax

Time available

20 minutes

Conclusions from the Exercise

· “Importing” is a domain in its own right. See Hibernate for example – that could be considered a DSL for persistence.

· Google “Meta Grammar” to find formal and informal notations for abstract grammars.

· Concrete examples are useful – e.g. small CSV file to be imported, instructions in the language to import files

· User stories make it clearer what is wanted

· The concrete syntax is not as important as the underlying model (this is actually a novel idea – what is the abstract grammar of Java for example? Though UML has an explicit metamodel)

· It is often easiest to work by analogy with existing examples

· It is important to understand the domain in order to design a good DSL

· Need lots of representative examples to make it easier to generalise

· The grammar will evolve, regardless of how good a job you do with the initial examples – how do you avoid breaking finished code in the initial version?

· Confusion between meta-levels: are we designing a language to describe business objects or a language to drive the importation process?

DSL Evolution

See slides

Round-Up

· Remember – we use DSLs all the time, so it helps to think about the design choices available and not just adopt the first best solution

· Configuration is preferable over code writing – instead of calling an API hundreds of times, it may be better to put the function arguments into a file and use code to validate them (not the Java compiler)

· Evolution, versioning and interactions may prove important

· Use the list of key considerations:

· Internal/external

· Horizontal/vertical

· Abstract/concrete

· Projections

· Top-down/bottom-up

· Generation/Synthesis

Exercise: take one concrete syntax that you like (e.g. an API) and analyse it using the above headings.

Additional resources

· www.codegeneration.net
· peter@pbell.com
· www.pbell.com (blog)

· BOF 9pm Robertson Room

