Issues in Software Composition, Evolution in Scalable Systems and the Significance of Dynamic Scripting Languages

David Simmons, SmallScript Corp.

Introduction

The talk is more about human psychology and the issues to do with crafting software systems. David has been involved in the evolution of “a Smalltalk language” since 1991. Scripting languages have grown enormously in importance and usage in the last seven years.

This talk contains recollections of how software development has changed for David over the past 25 years. How various metrics have changed, in parallel with shifts in software and hardware technology. Why is it still difficult to deliver software to meet deadlines, to work in very large teams?

Perhaps we’ll address questions of how the choice of tool and language affects ability to deliver.

What is Software Development?

· The science of computing

· The engineering of software

· The art of design (a creative process)

Change and human nature are the constants. The changes that have taken place are in

· Language (who is the client?)

· Syntax

· Semantics

· Man-machine interface

· Tools (what sets mankind apart?)

· Administration

· Organisation and structure

· Presentation

· Filtering

· Layering, granularity, scaling

Language contains rich semantics – a word can carry an enormous amount of meaning in context (which makes natural-language comprehension so difficult). Computer languages are very closely constrained for historical reasons (the inability of low-power processors to understand natural language). Today’s computer languages should be designed for the benefit of the human user.

Tools in the software field should reflect human uses of language – to create a common history and culture, to manage groups of people etc. The rate of change of software tools is far more rapid at present than in other fields e.g. civil engineering.

Tools can get in the way by interrupting your logical train of thought frequently, by forcing you to think about computer language issues instead of solving your problem. Other tools help you by helping switch context smoothly and easily (and back again).

Further issues:

· Process (consistency)

· Natural patterns (people follow the path of least resistance, mapping what they already know onto what they observe or have to do)

· Scalability

· Barriers to entry – the out-of-box experience

· Scripting languages give you more instant feedback and are hence more successful

· Early rejection is the fate of products which have more than 10% unfamiliar content for the user

· Pacing

· Constraints and limitations

· Internal

· external

· Adaptive personalisation

· Growth and fluidity

· Not possible with older kinds of hardware

· Outcome

· Complexity

· Pattern learning

· E.g. US phone numbers

· Humans remember things by connections and relationships

· Short term memory

· Temporality

· Modality (need cues to help pick up context after a switch)

· Capacity (tiring)

· Emotion

· Feedback

· Navigation

· Folding

· Encapsulation

· Labelling – simplifies complexity (e.g. Chinese ideograms)

David’s experience with changing scale and complexity

· Language

· Units of source code

· Volume/organisation of source code

· Other issues

1977

· Fortran and Assembler (National Bureau of Standards)

· 1 to 10s, sometimes hundreds of subroutines

· Data functionality organised using parameter blocks (much more like object oriented programming than some later languages)

· 100s to 1000s of lines, usually all in one file

· 1-32kb complete binary

· Code management tools: ha, ha

· Debuggers – none

· 4-64KB, 8-bit or 16-bit

· Cold, noisy machine rooms

1980s

· 8-bit personal computers

· People became much more knowledgeable

· People had access to all the source code and even hardware schematics

· APL, Fortran, C, Forth, shell script

· 10s to 100s of subroutines

· Data functionality organised using parameter blocks and structures

· 100s to 10000s of lines in 1, sometimes many files

· 1-32KB complete binary, possibly with segmentation

· Code management tools: e.g. vi, sccs

· 16-256KB, 8-bit, 16-bit and 32-bit operating up to a few MHz

· PE/32, Atari 800, PDP/UNIX, bsd, CP/M

· 640*400, vector, block mode 80*25, thermal printers…

· emphasis on games programming

1985

· C, Pascal, Lisp, Objective-C, shell scripting, spreadsheets

· Mainstream procedural focus, assembly language beginning to go out of fashion

· 100s to 1000s of subroutines

· Data functionality organised using structures, records, even classes (folding addresses the complexity problem)

· 1000s to 100000s of lines in multiple files

· Code management tools – emacs

1990

· Real split between MacOS and DOS/Windows developers

· MacOS wasn’t really an operating system any more – it was more of a vast toolbox, but without protected memory, a process model or anything traditionally “OS”. Emphasis moved towards aesthetics and application frameworks (MacOS camp).

· Up to 100K lines in a program – learning what it does is a major effort

· Binaries up to multiple MB

· IDEs and workbenches start to address the navigation problem

· Windows 3.1

· AppleTalk LAN; TCP/IP starting to make inroads

· Complete OS listings no longer available

1995

· C++, Smalltalk, Java, Lisp derivatives, Scripting, Components…

· Libraries, Classes, Methods, Frameworks

· 100s to 1000s of classes

· re-use and framework architecture dominate thinking and control portability

· spaghetti data remains a serious problem – many developers do not understand OO but have to use it anyway: the world divides again.

200x

· Software devalued – the emphasis is now on services and functionality

· Java, #-languages, scripting, web services

· Human design and process issues

· Vast libraries, classes, methods, frameworks (typically with IPR and so opaque – businesses are reluctant to have to rely on them)

· Dominant usage is scripting and componentisation – composition and evolution of federated elements

· Multi-MB binaries, heavily dependent on many other libraries and modules, with brittle/fragile static characteristics

· Rich versioning and security control – but poor compositional support

· Rich refactoring IDEs and development workbenches for cross-function orgnisational management

· Limited navigation, visualisation, filtering and relationship/contract support or control-point facilities

· MacOS X, Linux, Windows XP…

· Complete OS listings reappear in Open Source!

· Lots of memory and processor cycles available now – yet languages still carry the old fashioned baggage of strong data typing etc.

When talking about a contract, David is talking about a label on structure and functionality.

In 1995, David visited Knowledge Systems Corporation (KSC) in NC. They had been working on larger and larger Smalltalk systems. They recognised the idea of contracts and patterns of usage, so introduced the following idea: code analysers that would report on good and bad coding practice (categorised as red, amber or green) and also extracted the implicit contracts. Programmers, surprisingly, suddenly spent a lot of time trying to get their code to look green!

Software unit scales

· Expression

· Function

· Suite, protocol, contract, interface, facet

· Class, component (just what is the definition?)

· Assembly, subsystem, library, module, framework

· System, server, application (possibly dynamically composed)

· Cluster, server farm, web-service distributed system

Issues for language versus tools

· Means of expression

· Consistency (consistent application of style, patterns, comments)

· Shortcuts

· Ease of expression (e.g. macros)

· Ease of understanding (often in conflict with ease of expression)

· Means of understanding

· Source code is read much more often than written

· Everything should be done to aid the reader

Managing change – modularity is key. Smalltalk traditionally suffers from the “monolithic image” syndrome. It’s very difficult to get a release out of the door! David simply stopped doing Smalltalk in around 1998 and dabbled with Linux and portable devices for a while. Eventually Microsoft drafted him in to advise on the development of .NET and virtual machines. What Microsoft wanted was for them to validate their design by implementing a number of languages.

· Language adoption questions

· BASIC, shell languages…

· Spreadsheet languages, Hypertalk…

· Perl, Python, JavaScript

David observed that languages grew along with their user communities – Smalltalk was not evolving any more because the user community had grown static.

Processes in assimilating software

· Most code is read, not written

· Rule of three:

· Your first attempt is a one-off

· Component (sealed design) incorporates the lessons learned in first version – you usually don’t get the time or resources to do this, and the tools don’t really help

· Framework/subsystem (architected, unified, elegant but almost always complex) – you hardly ever get to this stage!

· Collapsing and labelling

· Continually shifting between architect, client and developer mode as you look at dependencies

· Outside-in and inside-out

· Big picture, roadmap

· Centring, establishing context and relevance

· Mapping (projecting) onto the known

· Presumptions are made explicit

Semantics of languages are extremely important. Tools need to assist in interpreting meaning between humans and machines. A call to arms: Developers, demand more of your tools!

S# Language

· Scalable language based on Smalltalk principles, but incorporating ideas and capabilities from many other languages, including scripting, functional, strong declaratively typed languages

· Features include

· Optional typing

· transparent FFI

· dynamic security

· weaving

· dynamic concrete behavioural mix-ins

· aspect weaving composition

· tasks

· threading

· semantic modelling through user-defined extensions to metadata

· language extensibility based on XML semantics

· You can choose to use it like C

· Presentation this afternoon

