
Getting Inside Common
Web Security Threats
ANDY LONGSHAW AND EOIN WOODS
SPA2015, JUNE 2015

Introductions

u  Andy Longshaw

u  Solution Architect at Advanced Legal

u  Inveterate worrier about system qualities
like availability and… security

u  Responsible for a public-facing, cloud-based web system

u  Eoin Woods

u  CTO at Endava

u  Long time security dabbler

u  Increasingly concerned at level of cyber threat
for “normal” systems

Goals

u  Introduce OWASP and the Top 10 Vulnerabilities List

u  Illustrate some of the Top 10 by exploiting them ourselves

u  Show how real attacks combine vulnerabilities

u  Introduce some useful tools

u  Mutillidae, BurpSuite, SQLMap

Content

u  The OWASP Top 10

u  The Tools We’ll Use

u  Exercises

u  Reviewing Defences

u  Summary

The OWASP Top 10

OWASP

u  The Open Web Application Security Project

u  Largely volunteer organisation, largely online

u  Exists to improve the state of software security

u  Performs research

u  Develops tools

u  Publishes guidance and informal standards

u  Runs local chapters for face to face meetings (a dozen in the UK alone)

u  “OWASP Top 10” project lists the top application security risks

u  Referenced widely by MITRE, PCI DSS and similar

u  Updated every few years (2003, 2004, 2007, 2010, 2013)

OWASP Top 10

u  #1 Injection Attacks

u  #2 Authentication and Session Management

u  #3 Cross Site Scripting (XSS)

u  #4 Direct Object Reference

u  #5 Security Misconfiguration

u  #6 Sensitive Data Exposure

u  #7 Function Level Access Control

u  #8 Cross Site Request Forgery (CSRF)

u  #9 Component Vulnerabilities

u  #10 Unvalidated Redirects and Forwards

These may look “obvious” but
appear on the list year after
year, based on real
vulnerability databases!

#1 Injection Attacks

u  Unvalidated input passed to an interpreter

u  Operating system and SQL are most common

u  Defences include “escaping” inputs, using bind variables, using
white lists, …

SELECT * from table1 where name = ’%1’

Set ‘%1’ to ‘ OR 1=1 --

Result => SELECT * FROM table1 WHERE name = ’ ’ OR 1=1 --

#2 Broken Authentication or
 Session Management

u  HTTP is stateless => some sort of credential sent every time

u  Credential sent over non-TLS connection can be tampered with

u  Session ID often displayed yet often as good as login details

u  Defences based on strong authentication and session management controls

a5f3dd56ff32 a5f3dd56ee33

#3 Cross Site Scripting

u  Slightly misleading name – occurs
any time script is injected into a user’s
web page

u  Reflected attack – crafted link in email,
on a forum, …

u  Persistent attack - database records,
site’s postings, activity listings

u  Allows redirection, session data stealing,
page corruption, …

u  Defences include validation and escaping on the server-side

#4 Insecure Direct Object Refs

u  Directly referencing filenames, object IDs and similar in requests

u  Not authenticating access to each on the server

u  e.g. relying on limited list of options returned to client

u  Allows client to modify request and gain access to other objects

u  Defences include using pseudo references on client and
authenticating all object accesses

http://mysite.com/view?id=file1.txt

 … how about http://mysite.com/view?id=../robots.txt ??

#5 Security Misconfiguration

u  Security configuration is often complicated

u  Many different places to put it, complex semantics

u  Layers from OS up to application all need to be consistent

u  It is easy to accidentally miss an important part

u  OS file permissions?

u  .htaccess files?

u  Shared credentials in test and production?

u  Allows accidental access to resources or even site modification

u  Mitigation via scanning, standardisation, simplicity and automation

#6 Sensitive Data Exposure

u  Is sensitive data secured in transit?

u  TLS, message encryption

u  Is sensitive data secured at rest?

u  Encryption, tokenisation, separation

u  Loss of data (e.g. credit card numbers) or spoofing attacks

u  Mitigation via threat analysis, limiting scope of data, standardisation

#7 Function Level Access Control

u  Relying on information sent to the client for access control

u  e.g. page menu omitting “update” and “delete” option for a record

u  Not checking the action (function) being performed on the server

u  Client can guess or infer the right request form for the other actions

u  Bypassed security model - also see #4 Insecure Object References

u  Never trust the client - check authorisation for every request

http://www.example.com/gettxn?txnid=4567

 à http://www.example.com/updttxn?txnid=4567&value=1000.00

#8 Cross Site Request Forgery

u  User triggers malicious code that submits fraudulent request using
browser security context

u  e.g. clicking a link => run JavaScript => change Github password

u  Various subtle variations on this make defence quite difficult

u  How you do you know it is the user?

u  Primary defence is the “challenge value” in pages

u  Expect the challenge value from the latest page in any request

u  More authentication steps for sensitive operations

u  Short sessions with real logout process

#9 Known Vulnerable Components

u  Many commonly used components have vulnerabilities
u  See weekly US-CERT list for a frightening reality check!

u  Many open source libraries don’t have well researched vulnerabilities

u  Few teams consider the security of their 3rd party components

u  And keeping everything up to date is disruptive

u  Consider automated scanning of 3rd party components, actively
review vulnerability lists, keep components patched

#10 Unvalidated Redirects
 and Forwards

u  Redirecting or forwarding to targets based on parameters

u  Avoid using parameters where redirect or forward is needed. Where
parameter is needed use a key and map to URL on server

http://www.mysite.com/selectpage?pageid=emea_home.html

 -> http://www.mysite.com/selectpage?pageid=pishinghome.com

(Without careful validation this redirects user to malicious page)

Summary of Attack Vector Types

u  Interpreter injections – OS, SQL, …

u  Page injections – HTML, XSS (JavaScript)

u  Lack of Validation – trusting client side restrictions, allowing session
IDs and cookies to be reused, not checking input fields thoroughly,
using parameter values directly in pages and links

u  Not protecting valuable data – data loss, spoofing, man in the
middle, …

u  Underlying Platform – configuration mistakes, vulnerabilities,
complexity

Tools We’ll Use

Mutillidae

u  Deliberately insecure LAMP
web application

u  We have provided it in a
VirtualBox VM

u  Provides examples of the
OWASP Top 10 in action

u  We will use it to illustrate
exploiting the vulnerabilities

www.irongeek.com
http://sourceforge.net/projects/mutillidae/

BurpSuite

u  Commercial proxy, scanning,
pentest tool

u  Very capable free version
available

u  Inspect traffic, manipulate
headers and content, …

u  Made in Knutsford!

http://portswigger.net/burp

Browser and Proxy Switcher

u  Chrome and SwitchySharp or
other similar pairing

u  Allows easy switching of proxy
server to BurpSuite

SQLMap (optional)

u  Automated SQL injection and
database pentest tool

u  Open source Python based
command line tool

u  Frighteningly effective!

Exercises

Structure of the Exercises

u  Scout out the system

u  SQL injection attacks

u  Insecure direct object reference attack for a file

u  Get access to the operating system

u  OS injection attack

u  Unvalidated file upload attack and inject PHP file into the web site

u  Get access to a user’s account

u  Write a blog post on behalf of someone else (session token attack)

u  Steal login credentials

u  XSS attack using a crafted HTML form, JavaScript and a blog post

Getting Started

Mutillidae
BurpSuite
(proxy) Browser with

proxy plugin
•  Start Mutillidae in a VirtualBox VM
•  Start BurpSuite and enable the proxy
•  Configure browser to use BurpSuite proxy (localhost:9000)

Working with the Exercises

u  Self paced exercises by yourself or in pairs

u  Self contained on your machine

u  We provide:

u  Overview and instructions

u  Solutions if you want them

u  As you go, reflect on what you’re learning – we’ll share at the end

Demonstrations

u  SQL injection to list all users

u  BurpSuite request interception

u  JavaScript alertbox injection

Exercises

•  35 minutes setup and initial exercise

•  15 minute break

•  45 minutes further exercises

•  Mutillidae URL

•  http://YOUR-VM-IP-ADDRESS/mutillidae

Reviewing Defences

Key Web Vulnerability Defences

u  Don’t trust clients (browsers)

u  Validate inputs, confirm authorisations, validate object references, …

u  Identify “interpreters”, escape their inputs, use bind variables, …

u  Operating system execution, SQL queries, JavaScript, …

u  Web page dynamic content (escape, validate, placeholders)

u  Protect valuable information at rest and in transit

u  Simplicity

u  Verify configuration and correctness

u  Standardise and Automate

u  Force consistency, avoid configuration errors

Summary

Summary

u  Much of the technology we use is inherently insecure
u  Mitigation needs to be part of application development

u  Attacking systems is becoming industrialised
u  Digital transformation is providing more valuable, less secure targets

u  Fundamental attack vectors appear again and again
u  Injection, interception, web page manipulation, missing validation, poor

configuration, …

u  Most real attacks exploit a series of vulnerabilities

u  Each vulnerability may not look serious, the combination is

u  Most mitigations are not difficult but need to be applied consistently

u  … and may conflict with other desirable qualities

Andy Longshaw
andy@blueskyline.com
www.blueskyline.com
@andylongshaw

Eoin Woods
eoin.woods@artechra.com
www.artechra.com
@eoinwoods

