Tangled Webs – finding Patterns for Web Services

Andy Longshaw, Eoin Woods

Premise

· Common distribution patterns are part of the toolbox used by most designers

· Web services have different characteristics from earlier distribution mechanisms – they bring new challenges

· Can we still use the same toolbox?

Objective

Explore how web services change the applicability of common distributed patterns and determine whether any of them are more or less relevant in the world of Web Services. Assess the impact of WS technology (protocols etc) on architecture, and of WS Style on patterns.

What are Web Services?

www.zapthink.com offers a useful definition. A set of protocols (HTTP, SOAP, WSDL, UDDI etc) and a service-oriented architecture (expose, discover and consume services).

SOAP is the underlying Web Service transport (RPC style or message-oriented). SOAP with attachments (SWA) carries non-XML content. W3C XML Protocol Working Group.

WSDL describes Web Services. Role 1: IDL in XML notation. Role 2: service location and access protocol information. Most of the popular tools don’t automatically separate out location-independent interface definitions. You can do it manually and use the include directive to pull the interface definition into the declaration of a particular instance of the service.

(NB the same factoring considerations apply to complex data types or classes used within a service – most tools just embed the type definitions within one WSDL file)

UDDI (Universal Description, Discovery and Integration) publishes WS meta-data (business information and technical service description). Search for a specific service or for a service type.

Implementing Web Services

· .NET (based on ASP.NET or .NET Remoting model, supported by VS.NET, uses attribute tags and reflection)

· Apache Axis (Java servlet-based, Open Source, uses reflection and Configuration files)

· J2EE RI, App servers and others (WS mandated by J2EE 1.4)

What is missing?

· Security (being defined)

· Transactions

· Choreography

· Life cycle

Resulting Architecture

· User Interface

· Business/Application logic

· Business web services – payment, currency conversion, credit checks, ERP functions etc.

· Platform – J2EE, .NET etc. and hardware

· Infrastructure web services (hang off the side) – things like Authentication

Architectural Impact of Web Services

Quality Properties of a system

· Non-functional attributes such as performance, scalability, security, flexibility

· How the system performs rather than what

· Many or most system failures are due to inappropriate quality properties, not missing functionality!

· “Architecture allows or precludes nearly al of a system’s quality attributes” (Clements, Kazman and Klein, SEI, Evaluating Software Architectures 2002) Eoin recommends this book!

Important Quality Properties (see crib sheets in the OT2003 binder, which give more information on each of these)

· Availability

· Efficiency

· Flexibility

· Internationalisation

· Performance

· Scalability

· Security

· Simplicity

Web Service Technology

· Module Communication Options: RPC-style or document-oriented?

· Technologies based on XML: SOAP, WSDL, UDDI, others (security, transactions…)

NB SEI prefers the term “elements” to “components” – mainly because it doesn’t have any preconceived meaning. Eoin uses the term “modules” in the above list.

UDDI is not really in use yet – the only public UDDI repositories are run by IBM and Microsoft.

Impact of Technology

· Availability – increased possibility for replication

· Efficiency – space and time impact of XML

· Flexibility – standardised technology should make plugging-together easier

· Internationalisation – little impact (but has “xml:lang” tag ()

· Performance – slow for RPC (but perhaps less for document-oriented)

· Scalability – replication possibilities provide potential

· Security – little impact as yet, since WS-Security not yet finalised

· Simplicity – most WS technologies are relatively easy to grasp and debug (but getting harder as more stuff gets loaded into the SOAP messages)

Exercise 1 – Impact of technology

Pattern Assessment 1

Pattern Name: Iterator
Brief Description: Access successive elements of an aggregate object sequentially, without exposing its underlying representation

Impact

	Quality
	+/-
	Explanation

	Availability
	-
	Can lose the connection to the server, server outage…

	Efficiency
	-
	Serialisation, network latency, verbosity of XML…

	Flexibility
	+
	Change implementation without rebuilding client.

	Internationalisation
	0
	Few user interface impacts (collating sequence?)

	Manageability
	-
	More points of failure, more things to configure

	Performance
	-
	Iterators cannot be parallelised (some scope for pre-fetch)

	Scalability
	+
	Only if there are lots of simultaneous clients

	Security
	-
	Plenty of scope for unauthorised inspection and even modification of the data in transit

	Simplicity
	-
	Programmer has to consider communication and parellelism issues as well as service definition and deployment

What makes the pattern particularly applicable to Web Services based systems?

The requirement addressed by the pattern does exist for Web Services. However, there might be other ways to solve it (the Record Set pattern, for example) or the iteration should probably be executed on the server side – so change the Web Service definition.

What makes the pattern particularly unsuitable for Web Services based systems?

Involves a large amount of web traffic. Pre-fetching requires an order of magnitude more complexity.

Applicability – where would you apply this in a Web Services based system?

Would probably try to avoid it. Indications might be where an interactive query was relatively expensive to execute, but the results were ranked such that 90% of clients were satisfied with the first one or two results (e.g. hotel booking).

Notes

For adequate performance, it will probably be necessary to implement some form of client-side result pre-fetching (cf. ODBC query).

For the efficiency calculation, it is worth considering whether the cost of re-executing a search is greater than that of storing a query result on the server and returning the results one by one. This will depend to some extent on the complexity of the query and the number of results (and the number of parallel queries).

Pattern Assessment 2

Pattern Name: Factory
Brief Description: Provide an interface for creating families of related or dependent objects, without specifying their concrete class.

Impact

	Quality
	+/-
	Explanation

	Availability
	-
	

	Efficiency
	-
	

	Flexibility
	0
	The pattern has flexibility as its explicit objective

	Internationalisation
	0
	

	Manageability
	-
	

	Performance
	-
	

	Scalability
	-
	

	Security
	-
	

	Simplicity
	-
	

What makes the pattern particularly applicable to Web Services based systems?

Nothing

What makes the pattern particularly unsuitable for Web Services based systems?

It is designed to solve a problem of object-oriented programming – not of remote service invocation

Applicability – where would you apply this in a Web Services based system?

Probably wouldn’t.

Notes

Andy Longshaw suggests that the word “object” in a pattern description is usually a dead give-away that it isn’t suitable for a Web Services implementation.

Impact of Style

Architectural Style

· A pattern for system-level organisation

· Types of system elements and their connectors

· Rules for connecting elements with connectors

· “Vocabulary” and “constraints” (Mary Shaw and David Garlan)

Generic or Domain-Oriented Architectural Style

· OO Style

· Compiler Style (tend to be referred to as Reference Architecture)

Web Services Style

· Service based: no object references! (there are various strategies for implementing stateful behaviour across the interface – not standardised)

· Loosely coupled: few dependencies on remote server

· Exclusively network interface connectors

· Coarse-grained elements: performance impact otherwise

· Allows dynamic combination of elements

Impact of style

· Availability: service based => service replication possible

· Efficiency: the style has little impact

· Flexibility: few dependencies (in theory!) vs. coarse-grained elements

· Internationalisation: service based => transparent I18N possible (but there are other ways to achieve this)

· Performance: network-only connectors => overhead

· Scalability: service based => replication possible

· Security: service based => security monitoring possible on every interaction between elements

· Simplicity: the style is simple – but resulting systems may not be! There’s a temptation to end up with a service-based mess arising out of many interconnected tiers of services.

Exercise 2 – Impact of Style

Pick another pattern and discuss impacts of Web Services style on it.

Pattern Assessment 3

Pattern Name: Broker
Brief Description: Structures distributed software systems with decoupled elements that interact by remote service invocations – e.g. a portal.

Impact

	Quality
	+/-
	Explanation

	Availability
	+
	Replication of portal or broker, no cached state on server

	Efficiency
	0
	The pattern is inherently distributed

	Flexibility
	+
	Back-end services can evolve independently, continuing to support existing WSDL (e.g. supporting additional arguments). Broker is designed for coarse-grained services anyway.

	Internationalisation
	+
	Example: a broker that accesses multiple bookstores and presents a single list of titles in the client’s preferred language

	Manageability
	+
	Web services style means server-side state does not have to be maintained

	Performance
	-
	XML overheads, server maintains no state

	Scalability
	+
	Replication possible (not a huge impact, as there are ways to crack this using DNS and traffic managers)

	Security
	-
	Broker pattern is not suitable for message-based end-to-end security, as the client must hold security tokens for each service ultimately accessed (always was an issue though)

	Simplicity
	-
	HTML forms are simpler for the client

What makes the pattern particularly applicable to Web Services based systems?

The fact that the same style of interface is used for both the client and the services invoked makes the whole construct more elegant, and probably easier to understand. Fewer data transformations will be needed internally to the broker.

What makes the pattern particularly unsuitable for Web Services based systems? Security difficult in any stateless system.

If the broker is to implement a single-sign-on facility, the stateless approach of Web Services style makes it unsuitable.

Applicability – where would you apply this in a Web Services based system?

Comparison shopping service, travel and hotel booking services – also aggregators such as consolidated e-billing and e-banking services.

Notes

Discussion

WS vs. RMI, DCOM or CORBA

	Similar
	Different

	Coarse-Grained
	Stateless

	Same interface considerations for design: everything you have learned still applies
	Application-level conversation

	
	Stronger “remote” constraints

	
	Service-based spaghetti

	
	It’s easier to explain the WS (such as address-search) to customers

	
	Encourages re-use by getting business people to think about orthogonal requirements properly (e.g. address search should not be enhanced to return post-code dependent risk indicators, because these are different for motor insurance than for household)

	
	Communication in WS tends to be business event oriented (XML documents and asynchronous) rather than system event oriented (transactions)

	The weakest link can break the system
	In inter-enterprise WS, you don’t necessarily have control over the weakest link (“a distributed system is one in which a computer I’ve never even heard of can stop me doing any useful work”) – service level agreements are essential

WS Patterns that work

· Façade (but you can be forced to use poor XSD data types in your data transfer structures)

· Broker

WS Patterns that do not work

· Factory and Iterator (these are all about stateful objects)

Principles

· Conversations are bad

· Objects are unsuitable (you can’t embed behaviour in SOAP messages, you can’t retain state on the server)

· Web Services can help to enable cross-platform interworking (this has little to do with the applicability of patterns)

· Any pattern that reduces the need for state and/or the number of message exchanges is likely to be applicable

New Patterns

· SOAP can convey an element called a SOAP Fault – which is intended to represent things like exceptions. But their implementation will vary from Java to C# to C++. Conclusion: check returned values and throw an exception if necessary.

