
[image: image2.wmf]
[image: image1.wmf]

SPA2006 A New Face for Java

28th March 2006

Duncan Mills, Oracle Developer Tools division

1 Where JSF came from

“Java Server Faces was designed by a committee, yet seems to work”. It’s a standard J2EE framework for generating “thin client” user interfaces – not just HTML pages. It also targets multi-client deployment such as mobile devices and even more exotic clients.

Plays in the same space as Apache Struts, Tapestry and similar UI frameworks.

JSR-127 took about three years (from May 2001) to come to fruition – currently JSF 1.1.

The next iteration (1.2) is defined through JSR-252 (Aug 2004-Aug 2005).

Version 2.0 being thought about already.

JEE 1.5 will support it as a native service, but in J2EE 1.4 implements it as a Servlet.

1.1 Elevator Pitch

Simplifies Web development:

· Based on a Component Model

· Hides the fact from the developer that they’re inside a servlet

· Automatic state and event handling

· Diverse clients – not just HTML

· Designed with tooling in mind

· You don’t need tools to develop JSF

· Additional design-time metadata supports tools in a rich way

· Applicable to a wide range of programmer types

· Can develop applications with minimal knowledge of J2EE

· Drag-n-drop page assembly with the right tools (e.g. Sun Studio Creator – a very simple environment)

· It’s a J2EE standard

1.2 Demo – a basic JSF page

Oracle JDeveloper used.

Jsf-impl.jar provides the framework classes and faces-config.xml contains all the configuration data of the application. Multiple instances of this file can be supported so that different applications (e.g. with their own JSF extensions) do not clash.

Drag/drop HTML widgets onto a canvas. More sophisticated widgets are supported too, which have no direct HTML equivalent.

Look at the source view – it’s JSP, but won’t actually be run as a JSP.

Components include layout facilities such as grids (similar to Swing), which can organise the components within a container. Less sophisticated than Swing. Two-column layout is one of the simpler options available.

Properties inspectors let you change the labels, appearance etc. of components. Associating an action to the button opens a Java source code editor into a new Java function e.g. commandButton1_action(). If the function throws an exception, an error dialogue is built automatically. Setting properties of named components can change their appearance, read-only status etc.

1.3 Fear, Uncertainty, Doubt

Questions that have exercised the Java and XML communities:

· Do we really need another Web framework?

· Yes, Struts has many “bad” patterns in it

· Isn’t it way too complex?

· The component model is complex, but building applications is simple – you are dealing only with Java beans, which are populated for you

· Do I have to use a tool?

· Tooling is important, but not essential

· Oh – is it out yet?

· Clearly yes.

1.4 The playing field

Duncan distinguishes .NET, Scripting (including PSP, LAMP and Ruby on Rails) and Java(J2EE). JSF is in the Java space; having taken aspects of Struts, WebWork, Spring, Tapestry and UIX. JSF itself is being extended by things like Shale.

JSF is a “second generation” framework. It adopts several key concepts:

· Dependency injection

· Decorator pattern

· Plain old Java objects (POJOs)

· No need to make a form bean to extend some other bean…

· Core J2EE patterns

· View helper pattern used for most UI manipulations and to push inputs into the underlying model

2 Architecture

2.1 Key terms

· UI component – JSF is component-based

· Managed Bean – objects maintained by the Inversion of Control mechanism

· Expression language – the ties that bind

· Navigation Case – rules that govern page flow

· Lifecycle

2.2 Components are King

Components emit events – e.g. ValueChanged.

Listeners can be registered to events just like in a Spring application.

A table is both a container and a component – so it can issue events such as SortEvent.

Components have attributes and behaviour, but also have one or more renderers – so they are implementation-independent and don’t need to know anything about mark-up. The renderer creates mark-up tailored to the client device and the deployment platform – such as Javascript.

Components may also be nested.

2.3 Simple example – see handouts.

f:view is the root of the component tree.

h:inputText is an input component.

“#{emp.name}” is a value expression that provides the binding to the underlying model.

A component actually has a number of values:

· Local value (a bucket – internal to component – accepts user input directly)

· True value (bound to the model – only updated once user input has been validated and if necessary converted to the right type)

2.4 Managed Beans

· Any type of Java object (with a default constructor) – or a Map or List

· Defined in faces-config.xml

· Scope

· Application

· Session

· Request

· None

· Lazy initialisation by JSF as needed

Example:

· Definition (xml)\

· Usage in a page (jsp)

· Usage in code (java)

2.5 Expression Language

Creates the binding between code / mark-up and objects. These can be value bindings (wrappers for get/set methods) or method bindings (e.g. to register an action listener on a component).

Evolution: JSTL(JSP 2.0(Unified EL(JSF

It uses the JavaBean model and dot-notation for attributes.

It can use the map notation #{foo[‘baa’]}.

Expressions can be nested to any depth and mixed.

Expressions can be evaluated e.g. to yield a Boolean value: “(#{userbean.name == foo[‘baa’].person.name}”.

Expression language can be used inside the UI equivalently to Java code. But the danger is that it can’t be tested as easily – it’s a run-time binding.

2.6 EFL example

Duncan removed the Java instruction that set the text input field read-only and replaced it with an EFL binding expression in the property inspector of the input field that set the read-only attribute TRUE if the input is not empty. This kind of rendering rule is powerful – e.g. for hiding or showing different regions of a form.

2.7 EFL elsewhere

Resources can be injected into model beans (which provide the persistence) with <value> tags inside <managed-property>.

In Java code, use app.createValueBinding(<EL expression>).

2.8 Navigation model

Action listeners can return an outcome (a string) instead of null. If the string is recognised by the navigation engine, it will interpret it to move to another page. Page flows can be designed graphically in JDeveloper. Global rules can be used as catch-alls. But the navigation model is fairly flat in base JSF – several suppliers have developed extensions (e.g. Shale framework). Nested flows should be formally part of JSF in the 2.0 version.

2.9 The lifecycle

See the handout diagrams. Lifecycle starts with a page request:

· Constitute the component tree (view)

· Render the response for target (possibly including data pulled from the database)

· Next request comes in

· Reconstitute the component tree and last state

· Apply request values to model

· Extension point: add your own converters

· If conversion fails, short-cut to renderer (with error message included)

· Process events and validations

· Again, on failure, short-cut to renderer

· Update model values

· At this point, the data model is synchronised with input values

· Invoke application

· This fires off event handlers (listeners first, navigation last)

· Render the response

Code can be added into:

· Converters

· Validators

· Application methods

· Injection points (e.g. to apply security checks)

See Java Faces in Action.

3 Ecosystem – the World of JSF

3.1 IDEs

Major players:

· Oracle – JDeveloper

· Sun – Studio Creator (for RAD developers)

· Eclipse – Exadel

· Eclipse – Webtools

· IBM – Rational Application Developer

· Others

3.2 Implementations

· Sun reference implementation

· Apache MyFaces project – an officially certified JSF implementation, with some nice features over and above Sun’s RI

· Sun Glassfish (JSF 1.2 reference implementation – not yet officially released)

3.3 Component Libraries

· MyFaces Cherokee (Apache)

· ADF Faces (Apache)

· Tobago

· Graphing and mapping components – mainly using existing charting and mapping modules (e.g. GoogleMaps lookalike built out of Oracle Spatial)

3.4 AJAX is the next big thing

· Smart components and asynchronous communication with the server

· JSF is ideal for AJAX!

· Framework takes care of interaction within an AJAX frame

4 Multi-Channel Deployment

This is possibly the most interesting part of JSF. A demo was given of a JSF parts inventory application being accessed by various client types:

· Web browser

· Telnet (24 by 80 block-mode) – still used a lot in warehouses

· Asynch (instant messaging, e-mail, SMS…)

NB things like tree controls are not properly rendered in Telnet!

It is not possible to deploy a single application magically to render to multiple device types.

5 Conclusion

· Modern, component-based framework

· Highly extensible

· Mix of code and meta-data

· Program a fragment at a time

· Ideally suited to RAD – but not restricted to it

· Safe to invest in skillset

· Still evolving

· Navigation model (nesting and multiple concurrent flows / states)

· Security integration

Resources:

· JSF in Action – Manning

· Core JavaServer Faces

· Jsfcentral.com – community site

· Otn.oracle.com/jsf

· Java.sun.com/j2ee/javaserverfaces/

6 Questions

· JSF and SVG 1.2 rendering / animation support? – See sourceforge for JSF SVG renderers (also Zool and others). Good for graphing and charting.

· What if you wanted a dynamically sized control – e.g. an array of buttons? – there are looping and iterating constructs, but a templating language is currently missing (however, see the Facelets project). You can also subclass container components to let you add a custom group of components. For variable-size result sets, built-in tables are available that are dynamically sized.

· Constraints on the design? – Layout issue (hard to get it pixel-perfect because the layout manager is to some extent device-independent). Rendering mechanism is constrained by the underlying mark-up. Cross-component validation can only be done at the back-end in an event listener. Error messages can be associated with the component that raised it or placed in a “general” area. The PartialTriggers property on a component allows it to observe another component – if the target component posts its value to the server (as AJAX components can do), this will allow the watcher to carry out additional validation and perhaps even refresh the on-screen value.

· Is the event model integrated with Swing? – it was copied from Swing, but it isn’t known whether JSF can be rendered as a Swing UI (there are people playing with the concept, also with Swing renderers derived from JSF).

COMPANY CONFIDENTIAL

	SPA2006 A New Face for Java
	28th March 2006

	Questions
	Page 7

COMPANY CONFIDENTIAL

[image: image1.wmf][image: image2.wmf]